EP2 Receptor Signaling Regulates Microglia Death.
نویسندگان
چکیده
The timely resolution of inflammation prevents continued tissue damage after an initial insult. In the brain, the death of activated microglia by apoptosis has been proposed as one mechanism to resolve brain inflammation. How microglial death is regulated after activation is still unclear. We reported that exposure to lipopolysaccharide (LPS) and interleukin (IL)-13 together initially activates and then kills rat microglia in culture by a mechanism dependent on cyclooxygenase-2 (COX-2). We show here that activation of the E prostanoid receptor 2 (EP2, PTGER2) for prostaglandin E2 mediates microglial death induced by LPS/IL-13, and that EP2 activation by agonist alone kills microglia. Both EP2 antagonists and reactive oxygen scavengers block microglial death induced by either LPS/IL-13 or EP2 activation. By contrast, the homeostatic induction of heme oxygenase 1 (Hmox1) by LPS/IL-13 or EP2 activation protects microglia. Both the Hmox1 inducer cobalt protoporphyrin and a compound that releases the Hmox1 product carbon monoxide (CO) attenuated microglial death produced by LPS/IL-13. Whereas CO reduced COX-2 protein expression, EP2 activation increased Hmox1 and COX-2 expression at both the mRNA and protein level. Interestingly, caspase-1 inhibition prevented microglial death induced by either LPS/IL-13 or low (but not high) concentrations of butaprost, suggestive of a predominantly pyroptotic mode of death. Butaprost also caused the expression of activated caspase-3 in microglia, pointing to apoptosis. These results indicate that EP2 activation, which initially promotes microglial activation, later causes delayed death of activated microglia, potentially contributing to the resolution phase of neuroinflammation.
منابع مشابه
Prostaglandin E2 regulates amyloid precursor protein expression via the EP2 receptor in cultured rat microglia.
We investigated the effects of prostaglandin E2 (PGE2) on amyloid precursor protein (APP) expression in cultured rat microglia. PGE2 treatment significantly increased the expression of APP holoprotein and was associated with an elevation in cyclic AMP (cAMP). Direct activation of adenylate cyclase with forskolin also increased APP expression. Co-treatment of microglia with PGE2 and the PKA inhi...
متن کاملSuppression of inflammation with conditional deletion of the prostaglandin E2 EP2 receptor in macrophages and brain microglia.
Prostaglandin E2 (PGE2), a potent lipid signaling molecule, modulates inflammatory responses through activation of downstream G-protein coupled EP(1-4) receptors. Here, we investigated the cell-specific in vivo function of PGE2 signaling through its E-prostanoid 2 (EP2) receptor in murine innate immune responses systemically and in the CNS. In vivo, systemic administration of lipopolysaccharide...
متن کاملMicrosoft Word - 29494834-file00.docx
The timely resolution of inflammation prevents continued tissue damage after an initial insult. In the brain the death of activated microglia by apoptosis has been proposed as one mechanism to resolve brain inflammation. How microglia death is regulated after activation is still unclear. We reported that exposure to lipopolysaccharide (LPS) and interleukin-13 (IL-13) together initially activate...
متن کاملProstaglandin E2-EP2 signaling as a node of chronic inflammation in the colon tumor microenvironment
Background Colorectal cancer is the third most common cancer. Involvement of prostaglandin (PG) system in the pathogenesis of colorectal cancer has been suggested from clinical studies demonstrating therapeutic effect of NSAIDs including aspirin or selective COX-2 inhibitors. However, mechanisms on how PG regulates inflammatory responses leading to colorectal cancer development remain obscure. ...
متن کاملProstaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling
Prostaglandins, particularly prostaglandin E2 (PGE2), play an important role during inflammation. This is exemplified by the clinical use of cyclooxygenase 2 inhibitors, which interfere with PGE2 synthesis, as effective antiinflammatory drugs. Here, we show that PGE2 directly promotes differentiation and proinflammatory functions of human and murine IL-17-producing T helper (Th17) cells. In hum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 88 1 شماره
صفحات -
تاریخ انتشار 2015